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The present military design specification for helicopter gust loads,
MIL-S-8698(ASG), relegates helicopter design practice to that of a
specialized fixed-wing case offering no gust load alleviation at rotor
disc loadings of six pounds per square foot and above., Although very
conservative, this criterion poses no design restrictions for the low-
speed flight regime because other maneuver load factors are more critical.

Recent advancements in rotorcraft forward speed capability together with
higher disc loadings have increased the importance of gust design criteria.
Thus, the program was initiated to analytically determine the gust response
of helicopter rotor/fuselage systems for both loaded and unloaded rotors at
high forward speeds. A computer program for determining the response of a
helicopter free to pitch, roll, yaw, and translate vertically while penetra-
ting a gust environment was developed. This program, universally applicable
to single-, tandem-, and tilt-rotor configurations, was used to run case
studies for investigating such parameters as rotor hub restraint, disc
loading, rotor thrust coefficient-solidity ratio, advancing tip Mach number,
forward speed, and gust profile on gust response. The intent was to digest
these findings and to make recommendations to {mprove and expand military
specifications for helicopter gust load design.

The decision to develop a single computer program universally applicable to
& myriad of VIOL configurations did impose limitations on computer storage
and running time. These limitations precluded a more rigorous approach to

the analysis, particularly a more realistic rotor wake representation,.provision

for more than four rotor blades, and the inclusion of torsional flexibility
with full aeroelastic coupling.

Among the major conclusions of this study are:

1. The use of a rotor-mass ratio to determine gust alleviation by
analogy with fixed-wing practice is unsatisfactory.

¢. Rotor thrust coefficient-solidity ratio is among the most influ-
ential parameters on gust alleviation.

3. Consideration of the aircraft to be penetrating the gust environ-
ment at a finite speed has such a profound influence on gust
alleviation that for a sine-squared gust profile, the effect of
nonsteady aerodynamics is insignificant.

The conclusion that unsteady aerodynamics is a second-order influence {is
supported by an independent effort, ''Dynamic Response of a Helicopter to
a Gust", sponsored by the U, S. Naval Air Systems Command under Contract
NOa(s) 53-318c, wherein individual rotor blades of 2-, 3-, and 4-bladed
rotors are considered to penetrate a gust gradient.
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SUMMARY

An analytical study of helicopter gust response at high for-
ward speeds is presented. A digital computer program de-
scribes the rigid-body aircraft motions in space and gives

an aeroelastic representation of two rotors. The rotors

can be positioned to form main-and-tail, tandem, or side-by-
side configurations. Many types of rotors (articulated, semi-
rigid, and rigid) can be evaluated. Compounding with auxil-
iary propulsion, using wings to unload the rotor, and con-
verting from lifting to prop-rotor conditions can be simulated.
Starting with specified trimmed flight, any feasible maneuver
can be performed while subjecting the aircraft to gusts or
other external influences.

For this study, a number of refinements which specifically
pertain to gust response were included in the program. The
most important of these appears to be the consideration of
gradual gust penetration. Effects of nonsteady aerodynamics
are also included in a simplified form.

The study results cover a wide range of forward speeds and
rotor and blade loadings for many current VIOL configurations.
Variatiors wzre made to study the effects of gust shape, rotor
type, and advancing-blade-tip Mach number on response to gustsi
In a group of compound single-rotor helicopter configurations,
variation in wing lift allowed a study of the effect on re-
sponse of rotor unloading by the wing. Dynamic effects from
rotor blade flexural motions were also considered. Several
cases with special devices for reducing gust response of the
rotor were computed. The effect of Lock number was deter-
mined by comparison of several cases where all other principal
parameters were held constant. Three hundred and three cases
were evaluated in the study. A simple empirical expression,
based on 50-ft/sec sine-squared gust cases, was developed that
will adequately predict the rotor gust-load ratio, AT/Thovers
for a wide range of helicopter and compound designs:

AT 0.057 Ly
— = 0.85 y7—— - C (1)
hover (CT/b)hover * hover

A principal finding is that the present MIL-S-8698 (ASG) re-
quirements are not adequate and are too severe for modern
high-speed helicopters. Recommendations for an improved
design specification and future investigation are included
in this report.
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INTRODUCTION

Rotary-wing aircraft experience milder reactions to gusts than
do most fixed-wing aircraft. One of the earliest reports of
this difference, a paper by Focke (1), presents qualitative
reactions of two pilots on a dual flight, one in a helicopter
w'th side-by-side rotors and the other in a fixed-wing airplane.
A similar test was conducted later by NACA (2) with instrumen-
tation to measure normal forces in the aircraft flying through
turbulent air.

The relatively mild reaction of the rotary-wing aircraft is not
substantlated by the simple theoretical expressions currently
in use, particularly those that evolved from fixed-wing experi-
ence. Figure 1 shows an example of gust-load factors due to
sharp-edged gusts, computed by NACA's Charts for Estimation of
Longitudinal Stability Derivatives for a Helico ter Rotor 1in
Forward Flight (3). This procedure neglects stall and com-
pressibility effects and assumes instantaneous changes in rotor
angle of attack, induced velocity, and blade flapping.
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Figure 1. Gust-Load Factor Computed for the
UH-1B Helicopter Using Linear Theory.

Current military design requirements (4) permit the use of an
alleviation factor which is a function of rotor disc loading.

However, this factor is unity for disc loadln%s greater than
6 pounds per square foot, as shown in Figure

At high speeds and for disc loadings greater than 5 pounds

per square foot, the computed gust-load factors are very high.
When, in addltlon maneuver loads are superlmposed on gusts

(as has occa31ona11y been required in certain design studies), an

1




unrealistic design situation is created. The rapid development
of compound aircraft and helicopters with higher forward speeds
and disc loadings has made the current method of determining
gust response prohibitively conservative.
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Figure 2. Gust-Alleviation Factor as Allowed
by Military Specification.

On the other hand, recent studies indicate that the thrust
capability of the rotor decreases with increasing advance
ratio. The aerodynamic limit shown in Figure 3 is calculated
by a digital method based on Gessow's development (5) and
includes the effects of stall and compressibility. Also shown
in Figure 3 is a practical limit based on flight test data (6).
The practical limit is a result of oscillatory rotor loads and
stall flutter effects, and is the controlling limit on rotor
thrust capability at high advance ratios. This conclusion is
supported by the findings of Ham and Young (7).

Unloading the rotor by adding a wing would give the rotor a
greater margin to accept gusts. The advantage, however, is not
as great as might be expected, because the rotor will usually
assume the larger share of the lift increase resulting from
gusts, as shown by tests with the AVLABS-Bell High-Performance
Helicopter (6). The military design specification would allow
a gust-alleviation factor that is unrealistically .low for an
unloaded rotor, illustrating again that a revision of the
reaquirements is necessary.

The desirability of a detailed study to bring the treatment of

gust effects on rotary-wing aircraft up to par with that of
fixed-wing technology was pointed out in 1965 (8). Sine-
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Figure 3. Rotor Limits as a Function of Advance Ratio.

squared gust shapes were considered instead of sharp-edged
gusts, and a mass ratio replaced disc loading in the deter-
mination of the gust-alleviation factor. Figure 4 shows the
result of that study. It indicates a considerable reduction
of the gust-alleviation factor from the present requirements.
The scope of that study, however, was insufficient to define
new requirements for all contemporary types of rotary-wing
aircraft. Furthermore, gradual penetration into the gust,
nonsteady aerodynamics, and aeroelastic feedback were not
considered.
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Jigure 4. Results of a Previous Gust Study in
Comparison With MIL Requirements.

3

DEEP -
Y i STALL /A HUEY COBRA (AH-1G)
‘ MANEUVERING

.
Cy 4




These factors are considered and evalugted.in this study. .
Recommendations for improved design criteria and future studies
are presented herein.

Also included in this report are the basic mathematical equa-
tions and a discussion of the computational procedures used.

A description of the analysis is presented in Program C81-11
Rotorcraft Flight Simulation (9), which was prepared in support
of this study. Reference 9 is available at nc charge upon
request from Bell Helicopter Company, PO Box 482, Fort Worth,
Texas 76101,

A magrnetic tape library program providing data storage and
retrieval of the time histories of 124 variables each for

94 maneuvers has been prepared. This program permits the
examination of maneuver variables, some of which are not
presented in this report, without recourse to computer reruns
of the cases studied. This magnetic tape library program will
be made available on a loan basis from the US Army Aviation
Materiel Laboratories to investigators intent upon further
studying the subject reported herein.
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CONCLUSIONS

The universal maneuver computing program developed for this
contract permits study of the gust response of a wide variety
of VIOL aircraft configurations and rotor systems. Gust shape
and intensity were varied, as were forward speed, disc loading,
rotor thrust coefficient-solidity ratio, and advancing-tip
Mach number. 1In all, 303 cases were investigated, from which
the following principal conclusions are drawn:

1. The gust-alleviation factors, Kg, computed in this study
indicate that the requirements of MIL-S-8698 (ASG) do
not adequately provide for the conditions of modern heli-
copters, and are in need of revision. The use of a rotor
mass ratio, Mg, to determine Kg by analogy with the fixed-
wing approach, as suggested in Reference 8, also does not
give satisfactory results.

2. The most important result of the study, from a design and
requirements point of view, is the finding that for all the
helicopters and compounds investigated the rotor gust-load
ratio, AT/Thgyers Can be expressed by a simple empirical
expression as a function of the rotor thrust cocefficient-
solidity ratio in hover, Cr/o, and the wing lift ratio,
Ly/Thover, prior to the gust:

AT 0.057 Ly
- = - + 0.85 T - C (L)
Thover (CT7b)hover hover

This method gives reasonable accuracy with appropriate
conservatism with Css 0.2 for semirigid (teetering) rotors
and about 0.1 for rigid and articulated rotors.

For a compound helicopter the wing gust load may be deter-
mined separately, using conventional fixed-wing methods.
An alleviation of the wing gust load, owing to the inter-
action with the rotor, was identified and found to be
related to the rotor thrust coefficient, Ct/o . It is
believed that this approach, after further refinement,
presents a convenient basis for design rules and gust
requirements.

3. The relative effects of various parameters on gust response
can be summarized as follows:

- Disc loading: Little influence

- Rotor thrust
coefficient-
solidity ratio, . .
Crp/o : Major effect (see equation (1))

!,.



-~ Compounding: Considerable effect at high
values of Ct/oc due to lift
sharing with a wing

~ Rotor type: Some effect, depends on dynamics

- Number of blades: Little effect

- Number of rotors: Increased effect for tandem
configuration

- Forward velocity

and advancing-tip
Mach number: Little influence

- Lock number: Slight reduction of gust load
with increased Lock number

- Pitch-flap

coupling: Little effect
- Pitch-cone

coupling: Appreciable effect
- Bobweight in

collective system: Appreciable effect
- RPM effects: Not investigated
-~ Rotor-blade

planform taper: Not investigated
- Rotor-blade )

cg-ac offset: Not investigated

L. Gradual gust penetration, nonsteady rotor aerodynamics and

S,

aeroelastic feedback proved to be the most influential
factors for sharp-edged vertical gusts. For sine-squared
gust shapes, the effects of gradual gust penetraticn appear
to be most prominent. After various gust shapes were in-
vestigated (sharp-edged, sine-squared, ramp, rooftop, hori-
zontal), a sine-squared gust with a maximum velocity of 50
feet per second and a ramp length of 90 feet was selected
as the best representation for the detailed analysis.

Gust effects on tilt-rotor configurations, during conver-
sion and in the high-speed airplane mode, were evaluated.
Gust loads on the stopped-rotor and trailed-rotor configu-
rations were investigated in a separate analysis., Flapping
stability at high advance ratios in relation to gust dis-
turbances was studied briefly. Although no general con-
clusions are formulated in regard to these various subjects,
important information is presented in this report for spe-
cific design conditions.
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RECOMMENDATIONS

A broad range of configurations and parameters was investi-
gated using a sophisticated mathematical model developed as
a part of the study. This approach produced gross answers
to questions of gust response for a wide variety of rotary-
wing VIOL aircraft. This broad approach, however, would
not permit detailed studies of key parameters without undue
expansion of the scope of the work. Yet it is of interest
to make small incremental changes in a number of specific
parameters (Lock number, ratio of wing lift to rotor lifrt,
gross weight, etc.). Therefore, further studies, supple-
menting the present results, are recommended.

New gust requirements, differing from those of MIL-S-8698
(ASG), and applicable to all pure and compound helicopters,
should be formulated. These requirements should relate the
maximum rotor gust load directly to the hovering thrust
coefficient-solidity ratio, CT/o, and to the ratio of wing
lift to hovering thrust prior to the gust. Conservative
values of the maximum wing gust load can be calculated
conventionally, and possibly adjusted by using a rotor-
interference factor.

Considerable nose-up pitching was computed for the tandem
cases with aft cg. For the forward cg case, the con-
figuration is stable and the gust response agrees with the
thrust change formula of the preceding section. The
stability characteristics of the chosen design examples
are uncertain. A more thorough investigation, with empha-
sis on the parameters relating to pitch stability, is
desirable.

Future analytical stud’es should include statistical
methods for considering the effects of random gusts.

The conclusions of this study should be verified experi-
mentally, particularly for the range of configurations and
parameters of current production rotorcraft.




APPROACH AND SCOPE OF THE PROGRAM

Adequate treatment of the helicopter gust-response problem
roqulres a degree of mathematical refinement which was imprac-
tical for engineering studies before the advent of large, high-
speed computers. Although restraint is still necessary to keep
computer time and storage requirements within reason, a consid-
erable advancement of the state of the art is now possible.

The development of a computing procedure to handle the detailed
gust-response analysis was a principal part of the work done
for this investigation.

One of the major goals of this study was to consider the effects
of gradually penetrating a gust shape, as opposed to all points
on the rotorcraft sensing a given gust velocity at the same
time. To denote the cases where gradual penetration was used,
reference will be made to a specific gust shape, such as sharp-
edged, sine-squared, or ramp. For cases where gradual penetra-
tion was not used (i.e., instantaneous immersion of the entire
aircraft), the disturbance will be referred to as a sudden gust.

The aim of the study was to establish a practical method for
determining gust-response design requirements for rotorcraft.

A procedure involving two steps was originally planned: first,
the calculation of response to a sudden gust using a minimum of
analytical refinement; second, the use of a factor to account
for effects not included therein. The simplified analysis would
replace the response formulas given in References 10 or 11, and
the factor would be similar in application to the gust-
alleviation factor discussed in Reference ll. 1In general, the
gust response for each combination of physical parameters and
flight conditions was computed both with and without the added,
detailed refinements. A gust-alleviation factor due to the
refinements was determined for each combination by a comparison
of the results. Although this approach was followed throughout
the study, an overall review led to the derivation of a rule
for rotorcraft gust response which can be used without any pre-
liminary analysis or additional factors.,

Since the formulas developed for the calculation of fixed-wing
gust response usually assume a sudden immersion in a gust, some
comparisons with ex1st1ng theory can be made for sudden-gust
responses calculated with the simplified analysis.

Figure 1 (page 1) shows that the calculated load factor in-
creases rapidly with forward speed when the method of Reference
3 is used. These results are obtained by assuming an instan-
taneous angle-of-attack change of

1

\%
Aar = tan~ —Vg“ (2)




It is assumed that Aa, is applied suddenly and simultaneously
over the entire rotor disc, and that induced velocity and blade
flapping adjust instantaneously. Additionally, no effects of
stall and compressibility are taken into account. It is obvious
that each of these assumptions implies unrealistic situations.
Removing the assumptions may have an important bearing on the

results, but it will also quickly increase the computational
complexities.

The theories of linear aerodynamics are entirely inadequate at
the high forward speeds of interest to this study. Therefore,
it is assumed that methods such as those developed by NACA (5)
can be used to account for stall and compressibility effects
as a part of the short-method baseline. The effect of this
modification on the calculated gust-load factor for the case
of sudden immersion in a gust is shown in Figure 5.

5S0-FT/SEC SUDDEN GUST |
~
2,
- LINEAR AERODYNAMIC %
é THEOR Y————
% /”’F>”
[
-
e
(=]
;
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AND COMPRESSIBILITY —
0

0 0.1 0.2 0.3
ADVANCE RATIO, M
Figure 5. Gust-Load Factor for ithe UH-1B, Showing f

Importance of Using Improved Aerodynamic
Methods Over Linear Theory.
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For the simplified method, sudden immersion of the entire
rotorcraft in a gust and steady-state aerodynamics are assumed.
However, stall and compressibility effects on the rotor blades
are included.

The possibility of using a stability derivative technique for
gust response was considered. The equations and coefficient
definitions given in Reference 12, Section l4, constitute an
analytical basis for this method. Gust-response characteristics
calculated from stability-derivative equations would not reflect
effects of stall and compressibility. Only small perturbations
about the trim point can be allowed because of the variations

in stability-derivative values. At best, this technique would
be more limited than the simplified method previously described.
Early in the course of this study it was decided that the
stability-derivative method would not be used.

The detailed analysis of gust response includes:

gradual penetration,

nonsteady aerodynamics,

aeroelastic feedback, and

a realistic gust-velocity function.

The gradual penetration effect is obtained by assuming that the
gust velocity is a function of location along the zero heading
axis. As the rotorcraft moves along this axis, gust-velocity
values at different locations on the fuselage or rotors will
not necessarily be the same at a given time. Pitching motion
of the fuselage and rotor blade flapping are emphasized by
simulating the rotorcraft penetrating a gust as a function of
time. Gradual penetration is considered to be more realistic
than the sudden immersion assumption.

The sinplest way of handling aerodynamic variations is to assume

that the situation under consideration can change from one )
steady-state condition to another instantaneously. Nonsteady

(transient or time variant) aerodynamic effects were treated

in an elementary way by Lucassen and Drees (13). The principal

nonsteady aerodynamic effect on gust response included in this

analysis is the behavior of lift following a change in blade

(or other aerodynamic surface) angle of attack.

The effect of gust shapes was first treated in Reference 8.

The most refined approach to date is probably that of Segel (lu),
but limitations on computer storage and run time precluded the
use of that method. Instead, a simplified approach is used.

By a gust-velocity function is meant a mathematical equation or
table such that, given the position xp of any point on the
rotorcraft, the gust velocity at that point can be obtained.

It should be noted that, in general, xp is a function of time.

10



Figure 6 shows the individual effects, computed with the pres-
ent program, of gradual penetration, nonsteady aerodynasmics,
and realistic gust-velocity functions. An appreciable varia-
tion is registered in each case.
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Figure 6. Effects of Gradual Penetration,
Nonsteady Aerodynamics, Aeroelastic
Feedback, and Gust Shape.
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